Statistical significance analysis of longitudinal gene expression data

نویسندگان

  • Xu Guo
  • Huilin Qi
  • Catherine M. Verfaillie
  • Wei Pan
چکیده

MOTIVATION Time-course microarray experiments are designed to study biological processes in a temporal fashion. Longitudinal gene expression data arise when biological samples taken from the same subject at different time points are used to measure the gene expression levels. It has been observed that the gene expression patterns of samples of a given tumor measured at different time points are likely to be much more similar to each other than are the expression patterns of tumor samples of the same type taken from different subjects. In statistics, this phenomenon is called the within-subject correlation of repeated measurements on the same subject, and the resulting data are called longitudinal data. It is well known in other applications that valid statistical analyses have to appropriately take account of the possible within-subject correlation in longitudinal data. RESULTS We apply estimating equation techniques to construct a robust statistic, which is a variant of the robust Wald statistic and accounts for the potential within-subject correlation of longitudinal gene expression data, to detect genes with temporal changes in expression. We associate significance levels to the proposed statistic by either incorporating the idea of the significance analysis of microarrays method or using the mixture model method to identify significant genes. The utility of the statistic is demonstrated by applying it to an important study of osteoblast lineage-specific differentiation. Using simulated data, we also show pitfalls in drawing statistical inference when the within-subject correlation in longitudinal gene expression data is ignored.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data

A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...

متن کامل

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

THE EFFECT OF QUINACRINE ON THE EXPRESSION OF WNT3A GENE IN MDA-MB 231 AND MCF7 BREAST CANCER CELL LINES

Background & Aims: Triple-negative breast cancer cells refer to any breast cancer that does not express the genes for the estrogen, progesterone, and HER2 receptors. The Wnt signaling pathway is important in the development and progression of various types of cancers. Quinacrine, a derivative of 9-aminoacridine, has been shown to inhibit the growth of several types of cancer cells. In this stud...

متن کامل

chHDAC11 mRNA Expression During Prenatal and Postnatal Chicken (Gallus gallus) Brain Development

Background: Histone deacetylation plays an essential role in transcriptional regulation of cell cycle progression and other evolutionary processes. Several results confirm the importance of the latest found HDAC11 gene to deacetylate histone core in neurons and their supportive cells in developing the vertebrate Central Nervous System (CNS).  Objectives: This study investigates the HDAC11 pote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 2003